Mean Field Analysis of Algorithms Generating Scale-free Networks

S Konini and EJ Janse van Rensburg
Mathematics & Statistics, York University
Toronto, Ontario

Barabasi-Albert

Vazquez

Solé

iSite

S Konini and EJJvR PLoSOne 12(12):e0189866 (2017)

Protein interaction network

2/33

• Growing a cluster using a recursive algorithm

Growing a Random Network or Cluster

Nashville, April 2018 3/33

Source: Albert *Scale-free networks in cell biology* (Journal of Cell Science 2005 118: 4947-4957; doi: 10.1242/jcs.02714)

Plotting the degree distribution P(k)

4 D N 4 B N 4 E N E N Y Y

Scale-free networks

- Degree distribution P(k) = Prob(degree of node is k)
- ullet Normally P(k) is binomially distributed (eg Erdös-Rényi model)
- Said to be Scale-free if P(k) obeys a power law:

$$P(k) \sim k^{-\gamma}$$

Nashville, April 2018 5/33

A large but finite network of *n* nodes has degree probability

$$P(k) \sim k^{-\gamma}$$

• P(k) is not integrable if $\gamma \leq 1$ as $n \to \infty$

• However
$$\sum_{k=0}^{n} P(k) \simeq \int_{1}^{n} P(k) dk \sim \frac{1-n^{1-\gamma}}{\gamma-1}$$

• That is, if $\gamma > 1$, then this is finite as $n \to \infty$

Nashville, April 2018 6/33

Measurable quantities associated with networks:

• Average number of nodes of degree k: $\{\langle d_k \rangle\}_n$

$$\langle d_k \rangle = n P(k)$$

Nashville, April 2018 7/33

Measurable quantities associated with networks:

• Average number of nodes of degree k: $\{\langle d_k \rangle\}_n$

$$\langle d_k \rangle = n P(k)$$

• Average degree: $\{\langle k \rangle\}_n$

$$\langle k \rangle = \sum k P(k)$$

Measurable quantities associated with networks:

• Average number of nodes of degree k: $\{\langle d_k \rangle\}_n$

$$\langle d_k \rangle = n P(k)$$

• Average degree: $\{\langle k \rangle\}_n$

$$\langle k \rangle = \sum k P(k)$$

Average number of edges (Size): E_n

$$E_n = \frac{n}{2} \langle k \rangle$$

The average degree (*connectivity*) for networks of size *n* grows as

$$\langle k \rangle_n = \sum_{k=1}^n k P(k) \simeq \frac{\int_1^n k \, k^{-\gamma} \, dk}{\int_1^n k^{-\gamma} \, dk} \simeq \left(\frac{\gamma-1}{\gamma-2}\right) \frac{n^{\gamma}-n^2}{n^{\gamma}-n}$$

$$\begin{cases} \left(\frac{1-\gamma}{2-\gamma}\right) n, & \text{if } \gamma < 1; \\ \frac{n}{\log n}, & \text{if } \gamma = 1; \end{cases}$$

$$\sim \begin{cases} \left(\frac{\gamma-1}{2-\gamma}\right) n^{2-\gamma}, & \text{if } 1 < \gamma < 2; \\ \log n, & \text{if } \gamma = 2; \\ \left(\frac{\gamma-1}{\gamma-2}\right), & \text{if } \gamma > 2. \end{cases}$$

Nashville, April 2018 8/33

• The number of edges grows as

$$E_n = \frac{1}{2}n \langle k \rangle_n$$

$$\begin{cases} \left(\frac{1-\gamma}{2(2-\gamma)}\right) n^2, & \text{if } \gamma < 1 \text{ (dense);} \\ \frac{n^2}{2\log n}, & \text{if } \gamma = 1 \text{ (marginally dense);} \\ \left(\frac{\gamma-1}{2(2-\gamma)}\right) n^{3-\gamma}, & \text{if } 1 < \gamma < 2 \text{ (super linear);} \\ \frac{1}{2}n\log n, & \text{if } \gamma = 2 \text{ (marginally sparse);} \\ \left(\frac{\gamma-1}{2(\gamma-2)}\right) n, & \text{if } \gamma > 2 \text{ (linear or sparse).} \end{cases}$$

Nashville, April 2018 9/33

Barabasi-Albert clusters

- Barabasi & Albert in Science; 286:509-512 (1999)
- Attach new nodes to existing nodes:

Nashville, April 2018 10/33

Barabasi-Albert clusters

- Barabasi & Albert in Science; 286:509–512 (1999)
- Attach new nodes to existing nodes:

Nashville, April 2018 10/33

Barabasi-Albert clusters

- Barabasi & Albert in Science; 286:509–512 (1999)
- Attach new nodes to existing nodes:

Preferential attachment of nodes to vertices of high degree

Nashville, April 2018 10/33

Modified Barbasi-Albert clusters

Bonds are added in two ways:

- p: Select x_j uniformly and attach x_n by inserting $\langle x_j \sim x_n \rangle$;
- 1 p: Attach x_n by adding $\langle x_j \sim x_n \rangle$ with probability $P_{jn} = \frac{k_j}{\sum_j k_j}$

Nashville, April 2018 11/33

Modified Barbasi-Albert clusters

Bonds are added in two ways:

- p: Select x_j uniformly and attach x_n by inserting $\langle x_j \sim x_n \rangle$;
- 1 p: Attach x_n by adding $\langle x_j \sim x_n \rangle$ with probability $P_{jn} = \frac{k_j}{\sum_j k_j}$

Modification:

Attach x_n by adding $\langle x_i \sim x_n \rangle$ with probability

$$P_{jn} = \min\left\{\frac{\lambda \, k_j + A}{\sum_j \, k_j}, 1\right\}$$

Recover the canonical algorithm when $\lambda = 1$ and A = 0

• Growing a cluster with p = 0.5 and of order n = 100000

Barabasi-Albert Cluster with p = 0.5

Barabasi-Albert clusters ("Dendritic appearance")

Nashville, April 2018 13/33

Modified Barabasi-Albert Clusters ($\lambda = 0.1$ left, and $\lambda = 1.5$ right)

Nashville, April 2018 14/33

Mean field theory for the Modified Barabasi-Albert algorithm

Barabasi-Albert clusters are relatively sparse networks

- $k_j(n)$ = degree of node j after n iterations
- Mean field: $k_j(n) = \langle k \rangle$

Nashville, April 2018 15/33

Mean field theory for the Modified Barabasi-Albert algorithm

Barabasi-Albert clusters are relatively sparse networks

- $k_j(n)$ = degree of node j after n iterations
- Mean field: $k_i(n) = \langle k \rangle$
- Elementary move of the algorithm:
 - Probability p append a random edge and node

Probability = p

Nashville, April 2018 15/33

Mean field theory for the Modified Barabasi-Albert algorithm

Barabasi-Albert clusters are relatively sparse networks

- $k_i(n)$ = degree of node j after n iterations
- Mean field: $k_i(n) = \langle k \rangle$
- Elementary move of the algorithm:
 - Probability *p* append a random edge and node

Probability
$$= p$$

2 Default: append edges $\langle x_i \sim x_n \rangle$ with probability

Probability =
$$(1 - p) \times \frac{\lambda k_j(n) + A}{\sum_j k_j(n)}$$

- - Bonds added:
 - With probability *p* one bond is appended

Nashville, April 2018 16/33

Bonds added:

- With probability p one bond is appended
- With probability 1 p for each j add $\langle j \sim n \rangle$ with $\Pr = \frac{\lambda k_j(n) + A}{\sum_i k_j(n)}$

Nashville, April 2018 16/33

Bonds added:

- With probability p one bond is appended
- With probability 1 p for each j add $\langle j \sim n \rangle$ with $\Pr = \frac{\lambda k_j(n) + A}{\sum_j k_j(n)}$

$$(1-p)\sum_{j} \frac{\lambda \, k_{j}(n) + A}{\sum_{j} k_{j}(n)} = (\lambda + \frac{nA}{\sum_{j} k_{j}(n)}) = (1-p)(\lambda + \frac{nA}{2 \, E_{n}})$$

since
$$E_n = \frac{1}{2} \sum_j k_j(n)$$

Nashville, April 2018 16/33

Bonds added:

- With probability p one bond is appended
- With probability 1 p for each j add $\langle j \sim n \rangle$ with $\Pr = \frac{\lambda k_j(n) + A}{\sum_j k_j(n)}$

$$(1-p)\sum_{j} \frac{\lambda \, k_{j}(n) + A}{\sum_{j} k_{j}(n)} = (\lambda + \frac{nA}{\sum_{j} k_{j}(n)}) = (1-p)(\lambda + \frac{nA}{2 \, E_{n}})$$

since
$$E_n = \frac{1}{2} \sum_j k_j(n)$$

• Change in the size $\Delta E_n = p + (1-p)\lambda + (1-p)\frac{nA}{2E_n}$

$$2E_{n}\frac{d}{dn}E_{n} = 2(p + (1-p)\lambda)E_{n} + (1-p)nA$$

17/33

$$2E_n\frac{d}{dn}E_n=2(p+(1-p)\lambda)E_n+(1-p)nA$$

Solve:

$$E_n = \frac{n}{2}((p + (1-p)\lambda) + \sqrt{(p + (1-p)\lambda)^2 + 2(1-p)A}) = C n$$

• γ > 2 (the network is sparse)

$$k_j(n)$$
 = Degree of vertex j at time n

• Recurrence for $k_i(n)$:

$$k_j(n+1) = k_j(n) + \frac{p}{n} + \frac{(1-p)(\lambda k_j(n)+A)}{2E_n}$$

where $E_n = C n$

$$k_j(n)$$
 = Degree of vertex j at time n

• Recurrence for $k_i(n)$:

$$\frac{k_j(n+1)=k_j(n)+\frac{p}{n}+\frac{(1-p)(\lambda k_j(n)+A)}{2E_n}}{C_n}$$

where $E_n = C n$

• DE approximation (*j*-th node is added at time t = j)

$$\frac{d}{dn}k_j(n) = \frac{p}{n} + \frac{(1-p)(\lambda k_j(n)+A)}{2Cn};$$
 IC: $k_j(j) = 1$

Scaling exponent γ for Barabassi-Albert clusters

$$k_j(n)$$
 = Degree of vertex j at time n

• Recurrence for $k_i(n)$:

$$k_j(n+1) = k_j(n) + \frac{p}{n} + \frac{(1-p)(\lambda k_j(n) + A)}{2E_n}$$

where $E_n = C n$

• DE approximation (*j*-th node is added at time t = j)

$$\frac{d}{dn}k_j(n) = \frac{p}{n} + \frac{(1-p)(\lambda k_j(n)+A)}{2Cn};$$
 IC: $k_j(j) = 1$

Solve the equation

$$k_j(n) = (1 + \frac{Q}{P})(n/j)^P - \frac{Q}{P}$$
, where $Q = p + \frac{(1-p)A}{2C}$ and $P = \frac{(1-p)\lambda}{2C}$

Nashville, April 2018 18/33

$$\overline{k_j(n) = (1 + \frac{Q}{P})(n/j)^P - \frac{Q}{P}}$$
, where $Q = p + \frac{(1-p)A}{2C}$ and $P = \frac{(1-p)\lambda}{2C}$

$$k_j(n) = (1 + \frac{Q}{P})(n/j)^P - \frac{Q}{P}$$
, where $Q = p + \frac{(1-p)A}{2C}$ and $P = \frac{(1-p)\lambda}{2C}$

- Fixed $\kappa > 0$
- The probability that $k_i(n) < \kappa$ is given by

$$P(k_j(n) < \kappa) \gtrsim P\left(\frac{j}{n} > \left(\frac{Q/P + \kappa}{1 + Q/P}\right)^{-1/P}\right) \quad \text{ for } 0 \le j \le n$$

$$k_j(n) = (1 + \frac{Q}{P})(n/j)^P - \frac{Q}{P}$$
, where $Q = p + \frac{(1-p)A}{2C}$ and $P = \frac{(1-p)\lambda}{2C}$

- Fixed $\kappa > 0$
- The probability that $k_i(n) < \kappa$ is given by

$$P(k_j(n) < \kappa) \gtrsim P\left(\frac{j}{n} > \left(\frac{Q/P + \kappa}{1 + Q/P}\right)^{-1/P}\right) \quad \text{ for } 0 \le j \le n$$

- Mean Field: j is uniform in $\{1, 2, ..., n\}$
- The RHS evaluates to

$$P(k_j(n) < \kappa) \gtrsim 1 - \left(\frac{Q/P + \kappa}{1 + Q/P}\right)^{-1/P}$$

$$P(\kappa) = P[k_j(n) = \kappa] = \frac{\partial}{\partial \kappa} P[k_j(n) < \kappa] \simeq \frac{(P+Q)^{1/P}}{(P\kappa+Q)^{1+1/P}} \sim \kappa^{-1-1/P}$$

Nashville, April 2018 20/33

$$P(\kappa) = P[k_j(n) = \kappa] = \frac{\partial}{\partial \kappa} P[k_j(n) < \kappa] \simeq \frac{(P+Q)^{1/P}}{(P\kappa + Q)^{1+1/P}} \sim \kappa^{-1-1/P}$$

This gives the following expression for γ :

$$\gamma = 1 + \frac{1}{P} = 1 + \frac{((p + (1-p)\lambda) + \sqrt{(p + (1-p)\lambda)^2 + 2(1-p)A})}{(1-p)\lambda}$$

Nashville, April 2018 20/33

$$P(\kappa) = P[k_j(n) = \kappa] = \frac{\partial}{\partial \kappa} P[k_j(n) < \kappa] \simeq \frac{(P+Q)^{1/P}}{(P\kappa + Q)^{1+1/P}} \sim \kappa^{-1-1/P}$$

This gives the following expression for γ :

$$\gamma = 1 + \frac{1}{P} = 1 + \frac{((p + (1-p)\lambda) + \sqrt{(p + (1-p)\lambda)^2 + 2(1-p)A})}{(1-p)\lambda}$$

• Canonical Barabasi-Albert clusters ($\lambda = 1$ and A = 0) are sparse

$$\gamma = 3 + \frac{2p}{1-p} \ge 3$$

• If A = 0 then

$$\gamma = 3 + \frac{2p}{(1-p)\lambda} \geq 3$$

• If $\lambda = 1$ then

$$\gamma = 1 + \frac{1}{1-\rho} + \frac{\sqrt{1+2(1-\rho)A}}{1-\rho} \ge 3$$

Plotting $\frac{\log P(k)}{\log k}$ against $\frac{1}{\log k}$ for Barabasi-Albert Clusters

- If p = 0 then $\gamma = 3.026$
- $\langle k \rangle_n \rightarrow$ Constant and the clusters are sparse

Duplication-Divergence clusters

- Vazquez etal in ComplexUS 2003; 1:38-44 (2003)
- Parameters

p =add bond between duplicated vertices;

q = delete predecessor and duplicated bonds

- iSite evolutionary clusters
 - Gibson & Goldberg in *BioInformatics*; **27**:376–382 (2011)

- iSite evolutionary clusters
- Gibson & Goldberg in BioInformatics; 27:376–382 (2011)

- iSite evolutionary clusters
 - Gibson & Goldberg in *BioInformatics*; **27**:376–382 (2011)

23/33

Nashville, April 2018

- iSite evolutionary clusters
 - Gibson & Goldberg in *BioInformatics*; **27**:376–382 (2011)

- iSite evolutionary clusters
 - Gibson & Goldberg in BioInformatics; 27:376–382 (2011)

- iSite evolutionary clusters
 - Gibson & Goldberg in BioInformatics; 27:376–382 (2011)

- iSite evolutionary clusters
 - Gibson & Goldberg in *BioInformatics*; **27**:376–382 (2011)

- iSite evolutionary clusters
 - Gibson & Goldberg in *BioInformatics*; **27**:376–382 (2011)

iSite evolutionary clusters

• Gibson & Goldberg in *BioInformatics*; **27**:376–382 (2011)

Isites are self-interacting with probability p

Isites are self-interacting with probability p and are active with probability q

◆□▶ ◆圖▶ ◆重▶ ◆重▶ ■ りゅご

Isites are self-interacting with probability p and are active with probability q Interactions are lost with probability r

Isites are self-interacting with probability p and are active with probability q Interactions are lost with probability r

- Initiate the network with one node x_0 with I active iSites;
- 2 Choose a progenitor protein v uniformly and duplicate it to a successor protein v':
 - A duplicated iSite $A' \in v'$ is *active* with probability q;
 - A duplicated iSite $A' \in v'$ is *self-interacting* with probability p;
- Add new interactions as follows if A' is active:
 - If iSite $A' \in v'$ is self-interacting then add the edge $\langle A \sim A' \rangle$;
 - If $\langle A \sim B \rangle$ is an interaction, then duplicate it to $\langle A' \sim B \rangle$ with probability 1-r;
- Iterate the algorithm until a network of order N is grown.

4ロト 4回 ト 4 重 ト 4 重 ト 重 めなく

iSite clusters

Mean field theory for iSite clusters

- $i_j(n) = \#$ active iSites on node j after n iterations
- The average number of iSites per protein is

$$i(n) = \frac{1}{n} \sum_{j} i_{j}(n)$$

• $k_j(n)$ = degree of node j after n iterations

$$2 E_n = \sum_j k_j(n)$$

- Mean field: i(n) iSites are created and qi(n) are silenced
- Recurrence for *i*(*n*):

$$(n+1)i(n+1) = ni(n) + (1-q)i(n)$$

since n i(n) = # iSites and (1 - q) i(n) are added in the mean field

- Mean field: i(n) iSites are created and gi(n) are silenced
- Recurrence for *i*(*n*):

$$(n+1) i(n+1) = n i(n) + (1-q) i(n)$$

since ni(n) = # iSites and (1 - q)i(n) are added in the mean field

Exact solution

$$i(n) = \frac{i(0) \Gamma(1-q+n)}{n! \Gamma(1-q)} \simeq \frac{I n^{-q}}{\Gamma(1-q)}$$

if
$$i(0) = I$$

Nashville, April 2018

• The number of edges increases in the mean field

$$\Delta E_{n+1} = \frac{2(1-r)}{n} E_n + p i(n)$$

since $\langle k_j(n) \rangle = \frac{2}{n} E_n$ edges are duplicated with probability 1 - r and $p_i(n)$ edges are created by self-interacting iSites

• The number of edges increases in the mean field

$$\Delta E_{n+1} = \frac{2(1-r)}{n} E_n + p i(n)$$

since $\langle k_j(n) \rangle = \frac{2}{n} E_n$ edges are duplicated with probability 1 - r and $p_i(n)$ edges are created by self-interacting iSites

Approximate this with a DE

$$\frac{d}{dn} E_n = \frac{2(1-r)}{n} E_n + \frac{pl}{\Gamma(1-q)} t^{-q}$$

The number of edges increases in the mean field

$$\Delta E_{n+1} = \frac{2(1-r)}{n} E_n + p i(n)$$

since $\langle k_j(n) \rangle = \frac{2}{n} E_n$ edges are duplicated with probability 1 - r and $p_i(n)$ edges are created by self-interacting iSites

Approximate this with a DE

$$\frac{d}{dn}E_n = \frac{2(1-r)}{n}E_n + \frac{pl}{\Gamma(1-q)}t^{-q}$$

• Solve this with IC $E_1 = 0$:

$$E_n = \frac{pl}{(1+q-2r)\Gamma(1-q)} \left(n^{2-2r} - n^{1-q} \right).$$

4 D > 4 P > 4 B > 4 B > B 9 Q (

Mean field connectivity of iSite clusters

$$\langle k \rangle_n = \frac{2}{n} E_n \simeq \frac{2pl}{(1+q-2r)\Gamma(1-q)} \left(n^{1-2r} - n^{-q} \right)$$

• $\langle k \rangle_n$ is dominated by the larger of -q and 1-2r

Mean field connectivity of iSite clusters

$$\langle k \rangle_n = \frac{2}{n} E_n \simeq \frac{2pl}{(1+q-2r)\Gamma(1-q)} \left(n^{1-2r} - n^{-q} \right)$$

- $\langle k \rangle_n$ is dominated by the larger of -q and 1-2r
- ullet The γ exponent is

$$\gamma = \begin{cases} 1 + 2r, & \text{if } r < \frac{1}{2}(1+q); \\ 2+q, & \text{if } r > \frac{1}{2}(1+q). \end{cases}$$

Mean field connectivity of iSite clusters

$$\langle k \rangle_n = \frac{2}{n} E_n \simeq \frac{2pl}{(1+q-2r)\Gamma(1-q)} \left(n^{1-2r} - n^{-q} \right)$$

- $\langle k \rangle_n$ is dominated by the larger of -q and 1-2r
- ullet The γ exponent is

$$\gamma = \begin{cases} 1 + 2r, & \text{if } r < \frac{1}{2}(1+q); \\ 2+q, & \text{if } r > \frac{1}{2}(1+q). \end{cases}$$

• If 2r = (1 + q) then a different solution is obtained

$$\langle k \rangle_n = \frac{pl}{\Gamma(1-q)} \, n^{-q} \log n$$

so $\gamma = 2 + q$ with a log *n* correction

4□ > 4回 > 4回 > 4 回

iSite clusters

- Plot of $\log P(k)/\log(k+1)$ against $1/\log(k+1)$
- \bullet I = 3, p = 0.5, q = 0.4, r = 0.3
- For these parameters, $\gamma = 1 + 2r = 1.6$

Average degree data for iSite Clusters

n	Column 2	Column 3	Column 3 Column 4	
3125	22.385	20.701	4.756	6.648
6250	26.524	25.752	4.770	6.556
12500	31.395	29.137	4.677	6.579
25000	37.808	35.308	4.733	6.358
50000	45.931	42.244	4.579	6.299
100000	54.830	50.035	4.584	6.204
200000	64.668	59.284	4.649	6.071
0-1	1 0 0 0 5	0.4 0.0		

Column 2:
$$I = 3$$
, $p = 0.5$ $q = 0.4$, $r = 0.3$
Column 3: $I = 5$, $p = 0.5$ $q = 0.4$, $r = 0.3$

Column 4:
$$I = 3, p = 0.5$$
 $q = 0.05, r = 0.8$

Column 5:
$$l = 5, p = 0.5$$
 $q = 0.05, r = 0.8$

•
$$\langle k \rangle_n = \frac{\gamma - 1}{2 - \gamma} n^{2 - \gamma}$$

• Columns 2 & 3:

Least squares: $\gamma =$ 1.74 and $\gamma =$ 1.74 (MF $\gamma =$ 1.6)

ullet Columns 4 & 5: $\gamma=$ 2.1 and $\gamma=$ 2.02 (MF $\gamma=$ 2.05)

Computational Time Complexity of Implemented Algorithms

• Time complexity $\sim n^{\tau}$

Algorithm	n = 6250	n = 12500	n = 25000	n = 50000	τ
Bar-Alb $(p = 0)$	0.602	2.51	9.03	38.0	1.97
Mod Bar-Alb ($\lambda = 2$, $p = A = 0$)	0.618	2.55	10.1	36.3	1.96
Dupl-Div ($p = 1, q = 0.4$)	0.349	0.862	2.04	5.01	1.28
Dupl-Div ($p = 1, q = 0.6$)	0.155	0.319	0.635	1.31	1.02
Solé ($\delta = 0.25, \alpha = 0.005$)	4.84	20.5	91.0	436.0	2.16
Solé ($\delta = 0.75, \alpha = 0.005$)	6.10	20.0	79.5	323.2	1.92
iSite ($p = 0.5$, $q = 0.01$, $r = 0.8$, $l = 1$)	0.114	0.234	0.454	0.925	1.00
iSite ($p = 0.5$, $q = 0.01$, $r = 0.8$, $l = 2$)	0.110	0.216	0.458	0.878	1.01
iSite ($p = 0.5$, $q = 0.01$, $r = 0.8$, $l = 3$)	0.106	0.217	0.432	0.857	1.00
iSite ($p = 0.5$, $q = 0.01$, $r = 0.8$, $l = 4$)	0.107	0.231	0.422	0.848	0.98
iSite ($p = 0.25$, $q = 0.01$, $r = 0.8$, $l = 4$)	0.104	0.249	0.415	0.844	0.98
iSite ($p = 0.75, q = 0.01, r = 0.8, I = 4$)	0.108	0.216	0.437	0.867	1.00

◆ロト ◆個ト ◆注 > ◆注 > ・注 ・ から(*)

Conclusions

- Variety of algorithms in the mean field
- Mixed success, in some cases good, other cases perhaps not
- Also considered the Solé model the clusters are not scale-free, but do exhibit a distribution which scales
- Also introduced variants of the models, and considered their properties
- S Konini and EJJvR PLoSOne 12(12):e0189866 (2017)

Thank you for the invitation to speak here!

4 D > 4 B > 4 E > 4 E > E = *)Y(

33/33

Nashville, April 2018

