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@ Growing a cluster using a recursive algorithm

Growing a Random Network or Cluster
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Source: Albert Scale-free networks in cell biology
(Journal of Cell Science 2005 118: 4947-4957; doi: 10.1242/jcs.02714)

Plotting the degree distribution P(k)
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— Scale-free networks

@ Degree distribution P(k) = Prob(degree of node is k)
@ Normally P(k) is binomially distributed (eg Erdds-Rényi model)
@ Said to be Scale-free if P(k) obeys a power law:

P(k) ~ k™
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A large but finite network of n nodes has degree probability

P(k) ~ k=7

@ P(k)is notintegrableif v <1asn— oo

oHoweverZP /P k) dk ~ 1= ’f !

@ Thatis, if ¥ > 1, then this is finite as n — oo
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.

Measurable quantities associated with networks:

@ Average number of nodes of degree k: {(dk)}n

| (k) = nP(k)|
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.

Measurable quantities associated with networks:

@ Average number of nodes of degree k: {(dk)}n

@ Average degree: {(k)}n
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.

Measurable quantities associated with networks:

@ Average number of nodes of degree k: {(dk)}n

[(dk) = nP(K)|

@ Average degree: {(k)}n

(k) =Y _kP(k)

@ Average number of edges (Size): E,

(k)

En:

NS
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.
The average degree (connectivity) for networks of size n grows as

"k k= dk 1\ n—m?
(Ko =" 3kt k P(k) ~ fhnkw = <b> =

(5=2)n  ify<t;

]

BaT ifv=1,

log n’

~ @i>#”,ﬁ1<7<&

-
log n, ify=2;
9 .
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@ The number of edges grows as

EnN
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En — %n <k>n

if v < 1 (dense);

if v =1 (marginally dense);

if 1 <~ < 2 (super linear); (1)

if v = 2 (marginally sparse);

if v > 2 (linear or sparse).
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. 3
— Barabasi-Albert clusters

@ Barabasi & Albert in Science; 286:509-512 (1999)
@ Attach new nodes to existing nodes:
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— Barabasi-Albert clusters

@ Barabasi & Albert in Science; 286:509-512 (1999)
@ Attach new nodes to existing nodes:

@ Preferential attachment of nodes to vertices of high degree

Nashville, April 2018

10/33



B
— Modified Barbasi-Albert clusters

Bonds are added in two ways:
@ p: Select x; uniformly and attach x, by inserting (x;~xp);

@ 1 — p: Attach x, by adding (x;~x,) with probability | P;, = ZLKI
]
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B
— Modified Barbasi-Albert clusters

Bonds are added in two ways:
@ p: Select x; uniformly and attach x, by inserting (x;~xp);

@ 1 — p: Attach x, by adding (x;~x,) with probability | P;, = ZLKI
]

Modification:
Attach x, by adding (x;~xp,) with probability

Recover the canonical algorithm when A =1 and A=0
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@ Growing a cluster with p = 0.5 and of order n = 100000

Barabasi-Albert Cluster with p = 0.5
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Barabasi-Albert clusters ("Dendritic appearance”)
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Nashville, April 2018

Modified Barabasi-Albert Clusters (A = 0.1 left, and A\ = 1.5 right)

(=2
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.
— Mean field theory for the Modified Barabasi-Albert algorithm

Barabasi-Albert clusters are relatively sparse networks

@ kj(n) = degree of node j after n iterations
@ Mean field: k;(n) = (k)
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— Mean field theory for the Modified Barabasi-Albert algorithm

Barabasi-Albert clusters are relatively sparse networks

@ kj(n) = degree of node j after n iterations
@ Mean field: k;(n) = (k)

@ Elementary move of the algorithm:

@ Probability p append a random edge and node
Probability = p
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.
— Mean field theory for the Modified Barabasi-Albert algorithm

Barabasi-Albert clusters are relatively sparse networks

@ kj(n) = degree of node j after n iterations
@ Mean field: k;(n) = (k)

@ Elementary move of the algorithm:

@ Probability p append a random edge and node
Probability = p

© Default: append edges (xj~x,) with probability
Aki(n)+ A

Probability = (1 — p) x L7
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@ Bonds added:
@ With probability p one bond is appended
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.

@ Bonds added:
@ With probability p one bond is appended

@ With probability 1 — p for each j add (j~n) with Pr = Azk"ﬁ,)(ﬁf
]

Nashville, April 2018 16/33



.

@ Bonds added:
@ With probability p one bond is appended

@ With probability 1 — p for each j add (j~n) with Pr = Azk"ﬁ,)(ﬁf
]

Aki(n)+ A n n
(1 —P);ijkj(n) =(A+ Zjlé‘(n)) =1 -p)A+ Zén)

since En = 3, ki(n)
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@ Bonds added:
@ With probability p one bond is appended

@ With probability 1 — p for each j add (j~n) with Pr = Azk"ﬁ,)(ﬁf
]

Aki(n)+ A n n
(1 _p);m :()\‘F E//é(n)):“ _p)()‘+ Qé,,)

since En = 3, ki(n)

@ Change in the size AE,=p+ (1 —p)A+ (1 — p)%
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@ Approximate by a DE for Ej:

2E, L E,=2(p+ (1 —p)N)En+ (1 — p)nA
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.

@ Approximate by a DE for Ej:

2E, L E,=2(p+ (1 —p)N)En+ (1 — p)nA

@ Solve:

En=3((p+ (1= PN + /(0 + (1 - pIAZ +2(1 - p)A) = Cn

@ v > 2 (the network is sparse)
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Scaling exponent ~ for Barabassi-Albert clusters

kij(n) = Degree of vertex j at time n

@ Recurrence for k;(n):

(1=p)(\k;(M)+A)

ki(n+1) = ki(n) + & + 5E,
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Scaling exponent ~ for Barabassi-Albert clusters

kij(n) = Degree of vertex j at time n

@ Recurrence for k;(n):

1—p)(Nk; A
Ki(n+1) = ki(n) + £ + U=RCHDHA

@ DE approximation (j-th node is added at time t = j)

1—p)(\k; A ,
9 () =B 4 CRPOKDTA. o gy = 4
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Scaling exponent ~ for Barabassi-Albert clusters

kij(n) = Degree of vertex j at time n

@ Recurrence for k;(n):
1—p)(Aki(n)+A
Ki(n+1) = ki(n) + £ + U=RCHDHA

@ DE approximation (j-th node is added at time t = j)

1—p)(\k; A ,
9 () =B 4 CRPOKDTA. o gy = 4

Solve the equation

kin)=(1+9)(n/j)f - 4|, whereQ=p+ % and P = “gg”
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kin)=(+9)(n/j)f — 4|, whereQ=p+ % and P = “g‘cm
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kin)=(+9)(n/j)f — 4|, whereQ=p+ % and P = (1§g)x

@ Fixedx >0
@ The probability that k;(n) < « is given by

- —1/P _
P(kj(n)<m)ZP<{, > <1O£7;) ) foro0<j<n
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kin)=(+9)(n/j)F — 4|, whereQ=p+ % and P = (1§g)x

@ Fixedx >0
@ The probability that k;(n) < « is given by

- —1/P _
P(kj(n)</-s)ZP<{7 > <?igj;) ) foro0<j<n

@ Mean Field: j is uniformin {1,2,...,n}
@ The RHS evaluates to

Q/P+k -1/p
P(k(n) < v) 21— ({/G5)
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Take the derivative to find (for 1 < kK < n)

1/P 4
PUr) = Plin) = Al = Pl(n) < o] = dEGre ~ w7
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.

Take the derivative to find (for 1 < kK < n)

1/P 4
PUr) = Plin) = Al = Pl(n) < o] = dEGre ~ w7

This gives the following expression for ~:

((p+(1=P)N)+/(p+(1—p)N)2+2(1—p)A)
(1-p)A
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.

Take the derivative to find (for 1 < kK < n)

W@:PWM%wﬂ:%PWW%Qﬂ:JHQW

Prt Q)77 ™

—1=1/P

This gives the following expression for ~:

((p+(1=P)N)+/(p+(1—p)N)2+2(1—p)A)

_ 1 _
V=TT (o)

@ Canonical Barabasi-Albert clusters (A = 1 and A = 0) are sparse

7:3—1—%23

@ If A= 0then
2
7 =3+ g 23
@ If A =1 then
1 1+2(1—p)A
’7:14‘@“‘ 1-p 23
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5 o 1= 200000
2 o 1= 100000
e n = 50000
12 e n = 25000
e = 12500
e = 6250
04
i
34
T 1
—0.1 L5
—34
—h 4
: log P(k)
Plotting =j55%~ against Iogk for Barabasi-Albert Clusters

@ If p=0then = 3.026
@ (k), — Constant and the clusters are sparse
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— Duplication-Divergence clusters
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@ Vazquez etal in ComplexUS 2003; 1:38—44 (2003)
@ Parameters

p = add bond between duplicated vertices;
q delete predecessor and duplicated bonds

Nashville, April 2018

22/33



. 3
— iSite evolutionary clusters

@ Gibson & Goldberg in Biolnformatics; 27:376—382 (2011)
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— iSite evolutionary clusters

@ Gibson & Goldberg in Biolnformatics; 27:376—382 (2011)
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The iSite evolutionary algorithm:
Isites are self-interacting with probability p
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The iSite evolutionary algorithm:
Isites are self-interacting with probability p
and are active with probability g
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The iSite evolutionary algorithm:

Isites are self-interacting with probability p
and are active with probability g
Interactions are lost with probability r
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The iSite evolutionary algorithm:

Isites are self-interacting with probability p
and are active with probability g
Interactions are lost with probability r

@ Initiate the network with one node xg with / active iSites;

© Choose a progenitor protein v uniformly and duplicate it to a
successor protein v’:
o A duplicated iSite A’ € v’ is active with probability g;
o Aduplicated iSite A’ € v’ is self-interacting with probability p;
© Add new interactions as follows if A’ is active:
o IfiSite A’ € v/ is self-interacting then add the edge (A~A’);
e If (A~B) is an interaction, then duplicate it to (A'~B) with
probability 1—r;

Q lterate the algorithm until a network of order N is grown.

Nashville, April 2018
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B
— iSite clusters
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.
— Mean field theory for iSite clusters

@ ji(n) = # active iSites on node j after n iterations
@ The average number of iSites per protein is

i(n) =3 ii(n)
j
@ kj(n) = degree of node j after n iterations

2E,=> ki(n)
J
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@ Mean field: i(n) iSites are created and g i(n) are silenced
@ Recurrence for i(n):

[(n+1)i(n+1)=ni(n)+(1-q)i(n)]

since ni(n) = # iSites and (1 — q) i(n) are added in the mean field
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.

@ Mean field: i(n) iSites are created and g i(n) are silenced
@ Recurrence for i(n):

[(n+1)i(n+1)=ni(n)+(1-q)i(n)]

since ni(n) = # iSites and (1 — q) i(n) are added in the mean field

@ Exact solution

if i(0) = |

Nashville, April 2018

i(n) =

i0)r(t—q+n  In9

nrl—-q)  (1-9q)
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@ The number of edges increases in the mean field

AEn =20 E 4 pi(n)

n

since (ki(n)) = %En edges are duplicated with probability 1 — r
and pi(n) edges are created by self-interacting iSites
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.

@ The number of edges increases in the mean field

AEn =20 E 4 pi(n)

n

since (ki(n)) = %En edges are duplicated with probability 1 — r
and pi(n) edges are created by self-interacting iSites
@ Approximate this with a DE

& E =20 E, + t=9

pl
n r(1—q)
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.

@ The number of edges increases in the mean field

AEn =20 E 4 pi(n)

n

since (ki(n)) = %En edges are duplicated with probability 1 — r
and pi(n) edges are created by self-interacting iSites
@ Approximate this with a DE

d 2(1— ;o
an En = ( - f') En + ﬁ t q
@ Solve this with IC E; = 0:
I 22 1—
En= ‘(1+q—2€) ri—q) (” "—n q) .
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Mean field connectivity of iSite clusters

<k>n — %En ~

2pl 1-2r _ —q
{+a-2nT(i-q) (” n )

@ (k), is dominated by the larger of —q and 1 — 2r

Nashville, April 2018
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Mean field connectivity of iSite clusters

2 2p! 1-2 -

@ (k), is dominated by the larger of —q and 1 — 2r
@ The v exponent is

Jr+er, iftr<3(1+9);
T 244, ifr>21(1+q).

Nashville, April 2018 29/33



.

Mean field connectivity of iSite clusters

2 2p! 1-2 -

@ (k), is dominated by the larger of —q and 1 — 2r
@ The v exponent is

Jr+er, iftr<3(1+9);
T 244, ifr>21(1+q).

@ If 2r = (1 + g) then a different solution is obtained

(k)n = r(%q) n~9logn

S0 v = 2 4+ g with a log n correction
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B
— iSite clusters

iSite I =3, p= 0.5, ¢ = 0.4 and r = 0.3

v T T
—01 0.5 1logk+1) 1

@ Plot of log P(k)/log(k + 1) against 1/log(k + 1)
@ /=3, p=05 9g=04,r=03
@ For these parameters,y=1+2r=1.6
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— Average degree data for iSite Clusters

n Column 2 Column 3 Column 4 Column 5
3125 22.385 20.701 4.756 6.648
6250 26.524 25.752 4.770 6.556
12500 31.395 29.137 4.677 6.579
25000 37.808 35.308 4.733 6.358
50000 45.931 42.244 4.579 6.299
100000 54.830 50.035 4.584 6.204
200000 64.668 59.284 4.649 6.071
Column2: [=3,p=05 qg=04,r=0.3

Column3: /I=5p=05 q=04,r=03

Column4: [=3,p=05 g=0.05r=0.38

Column5: =5 p=05 g=0.05r=0.8

o (k)p=2=1n?
@ Columns 2 & 3:

Least squares: vy =1.74and v = 1.74 (MF v = 1.6)
@ Columns 4 & 5: vy =2.1 and v = 2.02 (MF v = 2.05)
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— Computational Time Complexity of Implemented Algorithms

@ Time complexity ~ n™

Algorithm n=6250 n=12500 n=25000 n=50000] 7
Bar-Ab (p = 0) 0.602 2.51 9.03 380 | 1.97
Mod Bar-Alb (A =2, p= A= 0) 0.618 2.55 10.1 363 | 196
Dupl-Div (p = 1, g = 0.4) 0.349 0.862 2.04 5.01 1.28
Dupl-Div (p = 1, g = 0.6) 0.155 0.319 0.635 1.31 1.02
Solé (8 = 0.25, o = 0.005) 4.84 20.5 91.0 4360 |2.16
Solé (5 = 0.75, o = 0.005) 6.10 20.0 79.5 3232 | 192
iSite (p =05, =0.01,r=08,/=1) 0114 0.234 0.454 0.925 | 1.00
iSite (p = 0.5,g=0.01,r=08,/=2)  0.110 0.216 0.458 0.878 | 1.01
iSite (p = 0.5,g=0.01,r=08,/=3)  0.106 0.217 0.432 0.857 | 1.00
iSite (p=0.5,g=0.01,r=08,/=4) 0107 0.231 0.422 0.848 | 098
iSite (p = 0.25, g =0.01,r = 0.8, /=4)  0.104 0.249 0.415 0.844 | 098
iSite (p = 0.75, g = 0.01, r = 0.8, /=4)  0.108 0.216 0.437 0.867 | 1.00
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. 3
— Conclusions

@ Variety of algorithms in the mean field
@ Mixed success, in some cases good, other cases perhaps not

@ Also considered the Solé model — the clusters are not scale-free,
but do exhibit a distribution which scales

@ Also introduced variants of the models, and considered their
properties

@ S Konini and EJJVR PLoSOne 12(12):¢0189866 (2017)

Thank you for the invitation to speak here!
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